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1 Preface 
 
The scope of this course is the design of basic voltage feedback operational amplifier circuits. Using the 
ideal op amp model and solving for the currents and voltages at each terminal we get the transfer 
function as a Laplace Transform. This course provides a practical way of going from paper design to 
prototyping working circuits. 
 
This course is intended for professional electrical engineers. The course-taker should be familiar with 
the Laplace and inverse Laplace Transforms and basic AC network analysis. 
 
After completing the course, there is a quiz consisting of 16 multiple choice questions. On completion, 
4 professional development hours will count towards satisfying PE licensure renewal requirements. 
 
Navigating the course is facilitated by hyperlinked table of contents on each page or the tags in the 
bookmark pane. 
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2 Introduction 
 
The voltage feedback differential amplifier (“op amp” as it is called) is used in a wide variety of 
electronic applications such as: linear amplifier/attenuator, signal conditioner, signal synthesizer, 
computer, or simulator. 
 
A practical way to approach designing and implementing an op amp circuit is to start with the ideal 
model and get an expression that relates the output to the input, regardless of the input. This is 
accomplished by working with the loop equations in the frequency or s domain [1 ]. 
 
In summary, the key to getting the transfer function is that the voltages at the input terminals of a 
closed-loop op amp circuit mirror each other. Also, no current flows into or out of an input terminal. 
When a signal is applied to either or both terminals, the output will adjust itself to meet these 
constraints. 
 

 
 
    Figure 3.1-1 Loop analysis example 
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In the following sections, the same method is used for application specific circuits where the voltages 
and impedances are arbitrary. 
 
 
 
 
 
 
[1] To get the output in the time domain vo(t) we would have to multiply Vi(s) by Av(s) and then take the inverse Laplace 

Transform ; vo(t)=L
-1

[ Vi(s)·Av(s) ]. 
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3 The Ideal Voltage Feedback Op Amp 
 
The voltage feedback op amp is a discrete device that has 2 input terminals and one output terminal. 
Without feedback, the output is the difference between the input voltages, multiplied by the open-loop 
gain (transfer function) of the op amp.  
 

  
 
Figure 3.1-1 Ideal operational amplifier 
 
 

 
 
 
 
 
 
 
 

 
 
 
In the open loop model, each input terminal has infinite impedance so no current can flow into an 
input terminal even with a voltage source or a ground applied. The output terminal has zero output 
impedance. 
 
 
 
 
 
 
 
 

 
 
 

       Figure 3.1-2 Ideal op amp input impedances 
 
The ideal characteristics are summarized in Table 3-1 below 
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3.1 Ideal Characteristics 
 
 

Summary Of Ideal Characteristics 

Zin = ∞  the input impedance at each terminal is infinite 

Zout = 0 the output impedance is zero 

0=
±I  no current flows into either of the input terminals 

Avol = ∞  the open loop gain is infinite 

Bandwidth = ∞  the bandwidth is infinitely wide 

No temperature drift  

E o = 0  the output voltage is zero when E +
=  E -

  
 
      Table 3-1 Summary of ideal characteristics 
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3.2 Ideal Model with Feedback 
With feedback, all or a portion of the output is tied to either or both input terminals. The difference 
between the voltages at the input terminals is still equal to zero and again no current flows into either 
of the input terminals. 
 
The voltage at each input terminal is treated as a node and is determined by the loop equations. The 
terminal voltages are equated and we get a transfer function or closed loop gain which provides the 
output over the input as a ratio (Laplace Transform). 
 
In the following subsections, we’ll look at the  feedback models : the non-zero reference and the zero 
reference feedback models. As the names imply, the non-zero reference model is characterized by the 

voltage at either input terminal, 0≠
±

E , and the zero-reference model is where the voltage at either 

input terminal is referenced to 0 volts or ground; 0=
±E . 

3.2.1 The non-zero reference model 
 
 

 
 
Figure 3.2-1 Ideal op amp feedback model 
1 
 
 
 

3.2.1.1 The input impedance 
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3.2.2 The zero-reference model 
 
 
 

 
 
  Figure 3.2-2 Ideal op amp feedback model 2 
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3.3 Inverting or Non-inverting 
 
The determining factors for whether the output is inverted or not, are the circuit configuration and the 
loop equations for the terminal currents and voltages. With voltage feedback op amp circuits, which 
terminal the signal is connected to, by itself, does not determine whether the output is inverted or not. 
 
For example, the 2 circuits below are both inverting amplifier/attenuators circuits. The only difference 
is the op amp input terminals are reversed but both provide an output that is a linear amplifier or 
attenuator with 180° phase shift or inversion: 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
      Figure 3.3-1 Non-inverting examples  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
      Figure 3.3-2 Loop equations for Fig 3.3-1 
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3.4 About the Transfer Function 
 
The transfer function gives you the output over the input expressed as a ratio. To get the output for a 
specific input, multiply the Laplace Transform of the input by the transfer function. To convert to the 
time domain, take the inverse Laplace Transform [2 ]. Using Laplace Transform tables available on the 
internet or in printed textbooks, is a very useful tool in op amp circuit design. Some online references 
are listed in Appendix B. 
 
Working in the s domain (using Laplace Transforms) is advantageous and readily gives any transients 
that might exist  
 

  
 
 Figure 3.4-1 Black box diagram 
 
 
 

 
 
 
 
 
 Figure 3.4-2 Cascaded transfer functions 
 
In the time domain, you could not express the transfer function as a ratio. You would have to solve 
differential equations for the terminal voltages and currents and use the convolution integral to get the 
output as a function of time, because superposition does not apply. 
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output vo(t) after applying an arbitrary input vi(t) is found by convolving vi(t) with av(t)  { vo(t) ≡ vi(t)*av(t) } . 
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3.5 About Input Impedances 
An input source can be either a directly connected zero impedance source, or a thevenin equivalent 
source with an internal impedance. We need to be aware if a source does have internal impedance. 
This needs to be considered in determining both the input impedance seen by the voltage source and 
the transfer function of the circuit. 

3.5.1 Directly connected source 
Consider a directly-connected source, with zero output impedance, connecting to an op amp input 
terminal, through a series impedance Z1 : 
 

 
 
  Figure 3.5-1 Zero impedance source 
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3.5.2 Source with built-in internal impedance 
Consider the case where the input is the end of a cable span or an input from a previous circuit stage 
in the cascade: 
 

 
 
 Figure 3.5-2 Source with internal impedance 
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4 Linear Amplifiers and Attenuators 
The most basic circuit configurations are linear amplifiers and attenuators. Ideally, they provide flat 
gain or loss across the device-rated bandwidth. 

4.1 Voltage Follower 
The voltage follower circuit provides unity gain with no inversion. This circuit is used to isolate a high 
impedance source input and provide a buffered output. 
 
 

 
 
    Circuit 4-1 Voltage Follower 
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4.2 Inverting Amplifier or Attenuator 
The inverting configuration provides flat gain or attenuation with constant 180° phase shift. 
 

 
 
Circuit 4-2 Inverting Amplifier or Attenuator 
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4.3 Non-Inverting Amplifier 
The non-inverting configuration provides flat gain with no phase shift. 
 

 
 
  Circuit 4-3  Non-inverting Amplifier 
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5 Summation Amplifier 
The summation amplifier provides flat gain or loss and can be configured in an inverting or non-
inverting configuration. Typical uses are signal combiner, voltage comparator or summing junction. 

5.1 Inverting Summation Amplifier 
The inverting summation amplifier provides flat gain or loss across the rated bandwidth with constant 
180° phase shift. 

 
 
 
     Circuit 5-1 Inverting Summation Amplifier 
 
 

 
 

    Figure 5.1-1 E
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5.2 Non-inverting Summation Amplifier 
The non-inverting summation amplifier provides flat gain across the rated bandwidth with no phase 
shift. 
 

 
 
     Circuit 5-2  Non-inverting Summation Amplifier 
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6 The Integrator 
Typical uses of the integrator circuit are: noise reduction, simulation of a first order RC low-pass 
circuit, low pass filter, calculating an integral or just phase compensation. 

6.1 Inverting Integrator 
The inverting integrator provides low-pass filtering with constant +90° phase shift. The roll-off starts 
at DC. Typical use is direct integration of a time domain function, noise reduction, or low pass filter.  
 

 
 
    Circuit 6-1 Inverting Integrator 
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6.1.2 Bandwidth Considerations 
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6.2 Non-inverting Low-pass Filter 
The non-inverting low-pass filter provides filtering with phase shift that varies with the complex 
transfer function. 
 
 
 

 
 
   Circuit 6-2 The Non-inverting Integrator 
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6.2.1 The input impedance 

To calculate the input impedance seen by Vi we analyze the  E +
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6.2.2 Bandwidth considerations 
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7 The Differentiator 
Typical uses of the differentiator circuit are: simulation of a first order RC high-pass circuit, high pass 
filter, calculating a derivative or just phase compensation. 

7.1 The Inverting Differentiator 
The inverting differentiator provides high-pass filtering with constant - 90° phase shift. The roll-off 
starts at DC. Typical use is direct differentiation of a time domain function, or high pass filter. 
 

 
 
  Circuit 7-1 Inverting Differentiator 
 
 

 
 

Figure 7.1-1 E
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 and E
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7.1.2 Bandwidth considerations 
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7.2 Non-inverting High-pass Filter 
The non-inverting differentiator provides high-pass filtering with frequency-dependent phase shift. 
Typical use is direct integration of a time function, or noise reduction. The total phase shift is overall 
frequency dependent (with an imaginary zero and complex pole). 
 

 
 
   Circuit 7-2 Non-inverting Differentiator 
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7.2.1 The input impedance 

To calculate the input impedance seen by Vi, we look at the E +
 loop 
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7.2.2 Bandwidth considerations 
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8 Practical Considerations 
Device selection, component tolerances and power supply stability should be the priorities when 
designing and prototyping a circuit. 
 
Practical considerations are device and application specific. Various types of op amps ranging from 
general purpose, low and high frequency, to application specific devices have their own specifications 
and recommendations for optimal performance. 
 

8.1 Device Parameters 
Some commonly used terms and their textbook definition are listed in Appendix A. Manufacturers may 
use the same terms, call them by other names or introduce new parameters to thoroughly characterize 
their op amp. Manufacturers may also include application notes on how best to make offset or 
compensation adjustments for voltage, current and phase. Most of these parameters are centered on 
an open loop mode. 
 
So a circuit designer may not need to be concerned with all of the specifications when designing a 
circuit. It’s important to select a device that exceeds expectations. 
 
For example, the common mode rejection ratio is a value based on open loop gain and small, 
simultaneous signal variations on larger input levels; essentially nolise. A widely accepted minimum for 
the CMRR is 70dB. This value implies a level of stability that applies to a closed loop circuit and other 
parameters of the op amp. Less than 70dB indicates a noisier or less stable device. 
 
 
Below are data sheets for 2 op amps that can be used for comparison. 
[* links open in new browser window ] 
 

Device Description Overview and Specs PDF 

99http://www.national.com/mpf/LM/LM741.html LM741 - Operational 
Amplifier 

General purpose 
low frequency 

99http://www.national.com/ds/LM/LM741.pdf 

99http://www.national.com/pf/LM/LMH6609.html
LMH6609 - 900MHz 
Voltage Feedback Op 
Amp 

High speed high 
frequency 

99http://www.national.com/ds/LM/LMH6609.pdf 
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8.2 Power Supplies 
The decision to use single or dual voltage power supplies may be arbitrary or a design constraint. The 
better choice is to use a dual balanced supply to minimize circuitry required to offset the DC baseline 
for AC inputs. If there is no choice and a design must be a single voltage supply, each of the circuits 
above needs to be modified. 
 
 

8.2.1 Bypassing the power supply 
Use a well regulated power supply and bypass with electrolytic capacitors, choke coils or a combination 
of the 2 to further filter the supply voltage to the circuits. Keep lead lengths or printed circuit board 
layouts as short as possible. 

 
The best case for filtering out power supply connections is a 
series choke coil shunted by a capacitor (electrolytic or 
mylar) to minimize if not eliminate any noise and ringing on 
the supply rails.  
 
Choke coils may be expensive and impose additional space 
requirements in a final product, but they provide excellent 
filtering for a prototype. 

 
 Figure 8.2-1 Filtering the Power Supply 
 
Large electrolytic capacitors shunt out high frequency components and help keep the supply voltage 
regulated by absorbing voltage spikes or instantaneous load changes. Filtering power supplies helps 
keep the op amp operating in the range of its rated PSRR 
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8.3 Offsetting and Stabilizing 
The op amp data sheet may have specifications for offsetting and stabilizing. Below are cases for 
avoiding common-mode noise and shifting the DC baseline.  

8.3.1 Common mode noise 
When the intention to apply a constant 0 volts to either input terminal, tie the terminal directly to 
ground rather than through a resistor. This would prevent any voltage appearing due to leakage 
currents and having to offset or null it with additional biasing. Recommendations for offsetting 
mentioned in the op amp data sheet should also be followed. 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
      Figure 8.3-1 Avoiding common mode noise    
 

8.3.2 Shifting the DC baseline 
Working with AC sources that alternate between positive and negative voltages, and being constrained 
to using single supply op amps, requires shifting the DC baseline to avoid clipping of the output signal. 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
  Figure 8.3-2 DC baseline shift example 
 
 
 
 
 

Take Circuit 4 2 Inverting amplifier or 
attenuator as an example. If we are using a 
single supply and apply a sine wave as an 
input, the output produced would only be the 
positive portion of the input signal. 
 
Modifying the circuit as in the figure to the left 
will provide the DC shift that is needed to 
provide the expected output; an amplified or 
attenuated sine wave alternating about a DC 
baseline 
 
With no signal but the DC bias applied,  
V1 = V2 = VB and R is the thevenin equivalent 
of voltage dividers as shown in Figs 8.3-3. 
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     Figure 8.3-3 E
-
 loop with Vs = 0 and E

+
 loop with bias VB  

 
With no signal applied, the output Vo = VB which is now the baseline for this circuit. 
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8.4 Impedance Matching and Phase Compensation 
 
 

 
 
 

 
 
 
 Figure 8.4-1 Impedance matching 
 
 
 
 
 
 
 

An input voltage source may have an internal 
impedance that needs to be matched to achieve:  
maximum power transfer 
cancel out any reactances 
pre-condition the phase  
 
The figure to the top left represents either a directly 
connected voltage source with an internal 
impedance or a downstream thevenin equivalent 
source.  
 
Shunting the input source with an impedance Zm 
using RLC components will satisfy the requirements. 
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Figure 8.4-2 Canceling reactance 
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Appendix A. Commonly Used Terms 
 
Common-Mode Voltage Range  
Typically the range of voltages on the input terminals for which the amplifier’s performance is specified 
 
Common-Mode Rejection Ratio 
The ratio of differential voltage amplification to common-mode voltage amplification. It is measured by 
determining the ratio of a change in input common-mode voltage to the resulting change in input 
offset voltage change. 
 
Gain Bandwidth Product 
The product of a given input frequency and the op-amp open loop gain at that frequency (usually 
specified in MHz, voltage feedback amplifiers only.)  
 
Input bias current  
The Input Current specification is the average of the currents drawn by the two input pins. Input 
current is also often called "bias current" 
 
Input Offset Current  
The difference of the currents entering the two input terminals of a balanced amplifier 
 
Input Offset Voltage  
The DC error voltage which exists between the input terminals due to non-ideal balancing of the input 
stage to the output. It is multiplied by the closed loop gain 
 
Offset Current Temperature Coefficient  
The average rate of change in offset current for junction temperature variation over a specified 
temperature range 
 
Offset Voltage Temperature Coefficient  
The average rate of change in offset voltage for the junction temperature variation over a specified 
temperature range 
 
Output Offset Voltage 
The output voltage when the 2 input terminals are grounded. 
 
Output Voltage Swing  
The maximum peak-to-peak output voltage swing under specified load and supply voltages 
 
Power Supply Rejection Ratio 
Power Supply Rejection Ratio (PSRR) can be one of two specifications. DC PSRR is the ratio of the 
change in a specified parameter (e.g., Full Scale Error) that results from a specified change in the 
power supply voltage. AC PSRR is measured with a signal of specified frequency and amplitude riding 
upon the power supply and is the ratio of the output amplitude of that signal at the output to its 
amplitude on the power supply pin. PSRR is usually specified in dB 
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Slew Rate  
The rate that an amplifier output changes from one voltage level to another, usually given in V/µsec, 
when a step or square wave input is applied. Typically it is the average rate measured from 10% to 
90% of the total output voltage change 
 
Unity Gain Bandwidth 
The frequency where the amplifier open loop gain equals to one. It equals GBW if the op amp has a 
single pole roll-off in its frequency response 
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Online Reference List [* links open in new browser window ]
 
Table of Laplace Transforms, s.v. 11http://www.vibrationdata.com/Laplace.htm  (September 30, 2007) 

 

Laplace transform:” Table of selected Laplace transforms”. 

11http://en.wikipedia.org/wiki/Laplace_transform#Table_of_selected_Laplace_transforms   (September 

30, 2007) 

 

National Semiconductor, High-Performance Analog for Energy-Efficient PowerWise Designs. 

11http://www.national.com/   (September 30, 2007) 
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